Effects of Light

In cooperation with Kesseböhmer Ergonomietechnik GmbH Weilheim, Germany

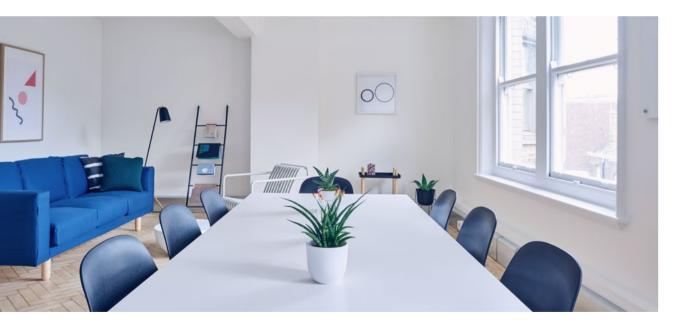
Workshop Effects of light on people

Oliver Stefani Fraunhofer Institute for Industrial Engineering Stuttgart, February 2017 Summary

Effects of light Contents

WORKSHOP EFFECTS OF LIGHT ON PEOPLE Summary

Oliver Stefani Fraunhofer Institut für Arbeitswirtschaft und Organisation


Stuttgart, Februar 2017

In Kooperation mit Kesseböhmer Ergonomics GmbH, Weilheim

Introduction	4-5
Effects of light on people	
Nonvisual	6-17
Visual	18-19
Emotional	20-21
Summary	22 – 25

CHAPTER 1

Effects of light on people Introduction

Light generally has three types of effect:

Nonvisual

In other words, the influence on people's bodily functions and cognitive processes

Visual

sensitivity, color vision, visual size perception, image quality, illuminance

Emotional

Motivation, mood, expectation

Circadian system Motivation and mood Phase Timing Management Personality shift Retinal Circadian \rightarrow Motivation \leftarrow irradiance timer performance Mood Spectrum Activation → Expectations ← Other Duration Visual Visual discomfort information Task Disruption fulfillment of the Glare Culture circadian timer Physical Cognitive performance performance Flicker **Tiredness** Context Visual Luminance Retinal Retinal Color differences Contrast image quality size illuminance Task Lighting

Visual System

CHAPTER 2

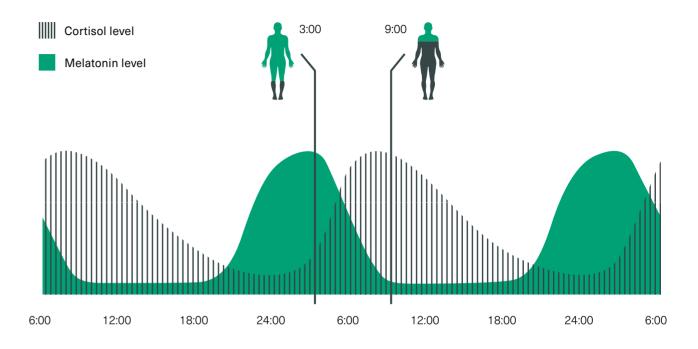
Effects of light on people **Nonvisual**

Light affects cognitive brain functions, even in blind people. After only seconds of exposure to blue light, regions of the brain are activated that are responsible for attention and cognition.

Bodily functions influenced by light

- Sleep-wake cycle: Everyone is subject to what is known as the circadian rhythm.
 This is regulated by our hormone balance and differs from person to person
- Release of hormones
- Heart rate/blood pressure
- Body temperature
- Pupil movement
- Cell division and regeneration

Cognitive functions influenced by light

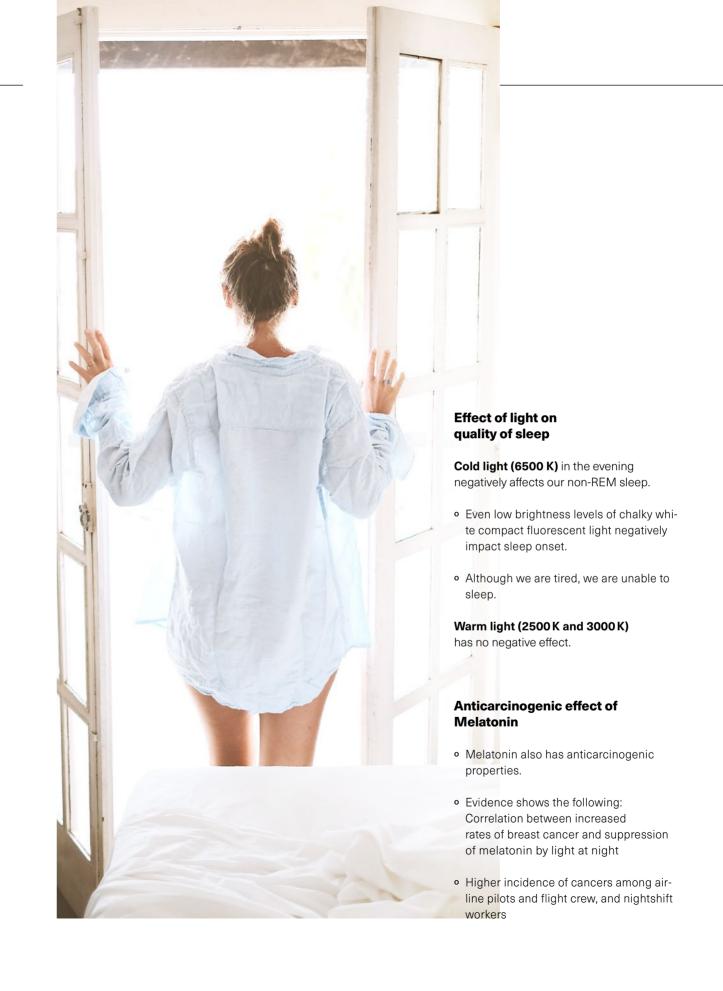

- Memory
- Attention

Effects of light on people Nonvisual

Hormonal changes influenced by light

Melatonin

- Messenger substance and antioxidant
- The sleep hormone plays a key role in entraining the 24-hour circadian rhythm, which regulates hormones, body temperature, and metabolism, depending on the time of day.
- It influences healthy sleep, tumor suppression, immune system regulation, the metabolism, as well as defending against free radicals.
- On average, it should be possible for melatonin levels to increase from 6 p.m. onward to ensure adequate production for healthy sleep.


The influence of daylight on the human body

Cortisol

- Messenger substance (stress hormone)
- Cortisol is essential for our many metabolic processes such as fat, protein, and carbohydrate metabolism.
- Cortisol is mainly produced in the second half of the night to ensure ideal preparation for the demands of the day.
 Over the course of the day, the cortisol should be broken down to a minimum.

Ganglion cells

- Intrinsically photosensitive retinal ganglion cells (ipRGC) and their connection with melatonin production or suppression have been known about for only a relatively short time.
- The cells respond in particular to light with a high blue component. They are distributed across the retina in such a way as to respond to light from above, such as natural daylight.
- The maximum sensitivity of the cells is approximately 480nm. This is where the greatest suppression of melatonin occurs.
 - This means that lighting with a high blue component, as is normally emitted by office lighting and computer monitors, results in suppression of melatonin formation.
 - This has a direct negative effect on the circadian rhythm, our sleep patterns and on cell regeneration.

Factors influencing our circadianen rhythm that lighting must take into account

Personal preferences

- Every person has their own genetically determined rhythm.
- Well-known chronotypes include:
 - The »lark«

Early birds whose internal clock runs faster

Normal types

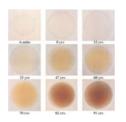
Majority of the population

• The »Owl«

Late types, whose internal clock runs slower

Age

- Our chronotype depends largely on changes in our eyes as we age.
- Three phases are generally distinguished:
 - Child/youth

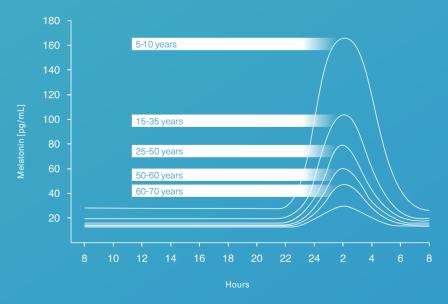

Generally late chronotype

Working life

Characterized by rising early, frequent sleep deficit

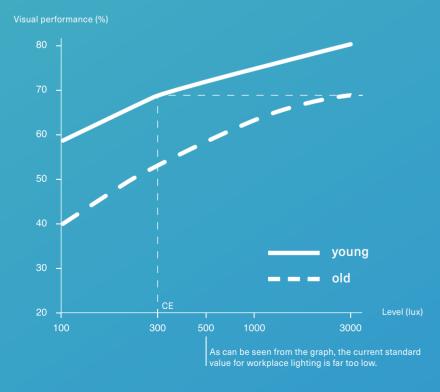
o Old and

Loss of biorhythm, greatly reduced sleep quality


Well-known age effects:

- Ocular opacity
- · Yellowing of the lenses
- · Decreased function of the iris

Lerman 1980

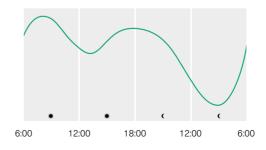

Age-related changes in the eye

- As we grow older, our eyes become increasingly opaque
- This reduces their transparency particularly with regard to the blue part of the spectrum
- In addition, pupil size decreases continually in age.
- Melatonin production decreases

Age-related changes in the eye

- Artificial lighting must take into consideration the increased demands that come with age.
- The curve shows an example of the correlation between: brightness (x axis), performance (v axis) and age (curve).

Effects of light on people **Nonvisual**

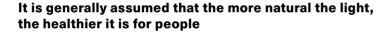

Factors influencing our circadianen rhythm that lighting must take into account

Sex

- **Women** tend on average to be earlier chronotypes; warmer light colors are experienced as pleasant.
- **Men** often change their chronotype when they reach retirement age, becoming early risers. Colder light colors are preferred.

Time of year and day

- People's performance varies over the course of the day and throughout the year.
- In winter, we tend to be less fit, have poorer concentration, and body weight and blood sugar increase.



Willingness of the people

Source: licht.wissen »Wirkung des Lichts auf den Menschen«

Effects of light on people Nonvisual

Effects of light on people **Nonvisual**

Studies have shown:

Natural daylight

- · Less stress for office workers
- Greater productivity and better health
- · Better test results for students

Lighting based on natural light (17,000 K with high blue component during the day / 1700 K blue reduced during night shift) in the workplace had the following results:

- Day shift: Higher subjective alertness, good mood, significantly higher productivity and concentration, better sleep quality, and longer sleep during the night.
- Night shift: Melatonin suppression significantly lower, no negative effects on cognitive performance and well-being.

Characteristics of natutal light

Healthy artificial light should have as many of these characteristics as possible:

- The color and the intensity of natural light changes constantly (with the time of day, weather, season, geographical latitude, etc.). Studies show that dynamic variations in light have a positive effect on people's well-being.
- The solar spectrum is continuous and contains virtually no gaps. During the day, it contains a high blue component, which is biologically stimulating and suppresses melatonin production.
 - Full-spectrum fluorescent lamps, known as True-Light lamps, demonstrably improve health and well-being (originally developed for astronauts).
- Natural light varies considerably in brightness; sunshine during the day emits up to 100,000 lux compared with 0.002 lux in the darkness of the night. Even the applicable lighting standards recommend only 500 lux. Light that does not change in brightness destabilizes our circadian system.
- Natural light is diffused widely from above. Because the ganglion cells containing melanopsin in the eye are distributed across a large-area of the retina, it is assumed that the biological effect of light is greatest if the light comes from a source with a large area

CHAPTER 3

Effects of light on people Visual

- The spectral light distribution influences processing of emotional stimuli in the brain.
- Blue light increases our response to emotional stimuli.
- The color temperature and illuminance that are experienced as pleasant are on the one hand interdependent and on the other subject to cultural differences.
- Color temperature and ambient temperature mutually influence each other:
 Low ambient temperature = low color temperature (pleasant),
 high ambient temperature = high color temperature (pleasant)
- In natural light, there is:
 - Color contrast, blue and green cool (associated with cool places): red and orange warm (associated with warm places)
 - Quantity contrast, colors seldom occur in the same quantities in our natural surroundings.
- Above all, light should reproduce the colors in the room correctly; the color rendering index for this purpose is measured in Ra. 100 corresponds to natural color rendering.

CHAPTER 4

Effects of light on people **Emotional**

- Light creates an atmosphere in rooms, and this is primarily perceived emotionally.
- People's well-being increases in proportion to the lighting situation and how well they can see in the workplace.
- In a darker working environment, employees tend to be more creative and cooperative but less honest.
- In a brighter working environment, employees are more analytical and morally upright.
- Orange-colored and pulsating light support recuperation.
- Red has a positive effect on concentration.
- Blue enhances creativity.

CHAPTER 5

Effects of light on people **Summary**

The potential of lighting is untapped

What good lighting can achieve:

I ower the risk of heart diseas

Make the workplace more ttractive

Enhance attention and cognition

Improve well-being

Reduce sleep disorders and reset the inner clock

Increase sales figure

Act as an antidepressar

Minimize cancer risk fo shift workers

Reduce errors

Effects of light on people **Summary**

Recommendations from SSLerate - Lighting for people

- Morning: Artificial dawn helps people wake up faster and results in better well-being and cognitive performance during the day.
- During the day: High-intensity with large blue component to improve alertness, performance, and mood
- Adequate daylight supports nocturnal sleep; the same applies for adequate darkness during the night.
- Patients and elderly people require a more and better quality of light. Good light acts as an antidepressant. It adapts the circadian rhythm of the body clock to the natural day/ night cycle.
- Both during the day and the night, intense blue-enriched light can improve alertness and vitality.
- Bright blue light during the last two hours before going to sleep negatively affects sleep onset and sleep. Low intensity and warm light (red and orange) disrupt sleep less.
- Bright and blue-rich light in the evening can cause a phase shift in the circadian rhythm.
 In contrast, the same type of light in the early morning can accelerate the circadian clock, causing people to feel tired earlier the following evening.

- In the night: Light reduces natural secretion of melatonin. Longer wavelengths and lower brightness help reduce the influence of nocturnal light on sleep.
- Exposure to bright blue-enriched light during the day helps make the circadian system less sensitive to nocturnal light. A greater contrast between day (high brightness levels) and night (darkness) helps stabilize the circadian system.

More information available in PDF format

Find out more about healthy lighting

Kesseböhmer Ergonomics

Your contact partner for further information

Sibylle Pöhler Product Manager

Phone +49 7023 108-3119 Mobile +49 175 2682626

s.poehler@kesseboehmer.de